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J. Phys. A: Math. Gen. 19 (1986) L763-L770. Printed in Great Britain 

LElTER TO THE EDITOR 

On the convergence of path integrals 

h a r o  de Souza Dutra, Carlos Farina de Souza and Marcel0 Batista Hott 
Instituto de Fisica/UFRJ, Cidade Universitaria, Ilha do FundSo, Bloco A, Centro de 
Tecnologia, Rio de Janeiro, Brazil 

Received 4 June 1986 

Abstract. We discuss the convergence of path integrals evaluating the quantum propagator 
of a particle under the action of a constant force by an iteration method. 

Since Feynman introduced path integrals in quantum mechanics in 1948 [ 11, their use 
has increased in many areas of physics. Although their first applications were in the 
calculation of quantum propagators, it is in the formalism of quantum field theories 
that they have shown to be a very powerful tool. In the case of non-relativistic 
propagators the equivalence between the usual Schrodinger formalism and the Feynman 
one can be proved [2], at least for a Lagrangian of the form 

L = im (dr /d  t)' - V( r ) .  (1) 

So we should be able to reproduce, in the Feynman formalism, the expressions for all 
propagators already obtained before from the Schrodinger one. However, even being 
sure of the equivalence of these two methods, only a few propagators have been 
obtained by path integrals. They are essentially those with quadratic actions (free 
particle, simple and forced harmonic oscillators, etc) or actions which, after some kind 
of transformation, reduce the problem to Gaussian integrals. For instance, the hydrogen 
atom can be reduced after a point canonical transformation and a time reparametrisa- 
tion to the problem of a harmonic oscillator in four dimensions [3, 41. 

From Feynman's postulates we can write, in one dimension [2], 

K ( a ,  b ) =  D[x(t)] exp(iS(a, b ) / h )  (2) I 
where K ( a ,  b)  = (xb( U (  f b ,  t,)lx,) is the usual propagator. 

If one is not interested in the exact quantum results, but only in the first corrections 
to the classical theory or even in obtaining the classical limit, the Feynman formalism 
provides a very simple way of doing this. 

In this letter we propose another approach for explicitly calculating path integrals. 
It can also be used in approximate calculations in more difficult problems and to put 
the question of convergence of path integrals in a more transparent form. 

K ( a ,  6 )  = lim (7) 
The formal relation (2) means in practice that 

N/2  +m +m I-, dx, . . . dxN 
N+m Tlh& 

E + O  
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where 

x b  = X N t l  tb = f N + l *  (4) 

The usual technique of calculating explicitly the propagator via path integrals is 
to calculate the first of the infinite integrals in (3) and try to obtain a recurrence formula 
for the successive results for these integrals, without analysing the expression for the 
propagator at each stage. But only after all integrations does one obtain the expression 
for the propagator. In this way the convergence of the path integral is not transparent. 
In our approach we pay attention to this problem. We will be able to evaluate how 
rapidly the path integral converges to the final result. We will calculate the total 
expression for K (a, b) when N = 0, called the zeroth approximation K'O', N = 1, called 
the first approximation IC''), etc, and try to find the expression for the general case 
K"'. The exact propagator will of course be given by 

K ( a ,  b)  = lim K"'(a, b). 
N-m 

Note that in our approach we search for recurrence formulae between successive 
approximate expressions for the propagator. 

We will illustrate our method performing the path integral explicitly for the propa- 
gator of a particle moving under the action of a constant force f: There are of course 
many other ways of calculating this propagator [ 2 , 5 , 6 ] .  For this particular case, 
equation (3) reduces to 

1 (N+1)/2 +CO +m 

= lim (-) [ dx, . . . [-, dXN 
N+m 2T1hE -m 

E -0 

11 x e x p [ i (  f J - ( x j + l - x j )  2 1  - 5 E f ( x j + x j + , )  
h j 4 2 E  

where we have set m = 1 for convenience. 
In the zeroth approximation we have 

K'O'(x0, X N + 1 =  x , ;  7 = E )  = (7) 

In this case only one trajectory contributes to the propagator since there is no 
integration to be performed (see figure 1). This approximation becomes exact only 
for the free particle case. That is, in this particular case the propagator has the same 
form, independent of the length of the time interval. 

The reason is that the only trajectory which contributes in the zeroth approximation 
coincides with the classical one and, as is well known, for quadratic actions the 
propagators can always be written as 
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Figure 1. In this case just one trajectory contributes. 

where F ( T )  is the pre-exponential factor [2]. 
In the first approximation we write 

K‘”(X0, XN+,=X2, 7 = 2 & )  

Here, infinite trajectories contribute, but all of them are of the same type. They 
are polygonals with just one ‘vertex’ because we still have to integrate over the 
intermediate variable x, (see figure 2). Completing squares in (9) we obtain 

where 

c f = f(x2 + xo) + f E 2 j  (11) 

We will use a particular nomenclature for the constants c j N )  which will appear 
from now on in the process of completing squares in the Fresnel integrals. In this 
notation the upper index indicates the number of intermediate integrations and the 
lower index means that this constant was introduced to complete squares in the ith 
integration. 

Performing the Fresnel integral in (10) and rearranging terms we obtain 
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XO X I  X N t l ’ X Z  
X 

Figure 2. Polygonals which contribute in the first-order approximation. 

In the second approximation we have 

K‘2’(xo, XN+I = x,; 7 = 3 & )  

= (--!-)”‘ Ita dx, dx2 
2.rrih.s -m -m 

I) 1 
x exp - [(x, - x2)’+ (x2 - x,)’+ (x, - x0)’- E ’ ~ ( X ~ + ~ X ~  +2x2+x3) . 

(13) 
(2hE 

Here all the trajectories which contribute to K have two ‘vertices’, because there 

Completing squares to integrate over the variable x2 we write 
are just two intermediate integrations (see figure 3). 

where 

(15) c 2  , - -z(X,+X3)+f&2J L 

Performing the Fresnel integral in (14) and completing squares to integrate over 
the variable xI we have 



Letter to the Editor L767 

XO X I  x2 x N + l = x 3  
X 

Figure 3. Polygonals which contribute in the second-order approximation. 

where 

c:=f(2xo+x3)+&2f: (17) 

Performing the integration in (16) and rearranging terms in the exponential we 
obtain for this approximation the result 

In the third approximation we have 

K‘3’(Xo, X ~ + l = x 4 ;  T = 4 & )  

(19) 
1 x exp - [(x4- x3)*+. . . + (xl  - xo)2~f(xo+2xl  +2x2+2x3 +x4)1 . 

(2;& 

In this case all trajectories which contribute to the propagator are polygonals with 

With an entirely analogous procedure to the one used before, we obtain, after the 
three ‘vertices’, because there are three intermediate integrations. 

first integration in the variable x3, 

K ( ~ )  =- 1 (-) 1 3’2 (i [ ( x ~ + x $  - ~ ~ f ( ~ , + x , ) l )  j: dx, j: dx2 4 Tlh& exp 2h& 
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Completing squares in the variable x2 and integrating in this variable we have 

where 
c 3  - 1 

2 - 3( 2x1 + x4 + 3 & ’f). 

To perform the last integration we rewrite ( 2 2 )  in the form 

Evaluating the integral in (24) and using ( 2 5 )  we finally obtain 

We could go on to the next approximation, but it is really not necessary. As we will 
see, with the previous results we will be able to obtain the expression for the Nth 
approximation for the propagator. 

Let us have a look at the successive approximate expressions for the propagator 
before the last integration is performed in the variable x1 . In order to do this, we will 
write the respective expressions appearing in the exponential arguments in ( l o ) ,  (16 )  
and (24) (apart from a factor (i/2fie)) as 

N = l  [ ( x i  + x:) - s2f(x0 + x2)  - a ,  ~ ~ f ’ ]  - 2(x1 - c :  )2 - 2(c: l2  al=O (27a) 
a -1 N = 2  [ ( ~ ~ + f ~ : ) - s ~ f ( ~ ~ + 2 ~ ~ ) - a ~ ~ ~ f ~ ] + ~ ( x ~  -c:)’-$(c:)’ 2 - 2  (276) 

N = 3  [ ( X ~ + ~ X ~ ) - E ~ ~ ( X ~ ~ ~ X ~ ) - ~ ~ E ~ ~ ~ ] + $ ( X ,  -C:)~-$(C;)’ a3=2 (27c) 

where we have introduced the coefficients ai for convenience. 
Generalising equations ( 2 7 )  we write 

Note that in ( 2 8 )  we still have to identify the expressions for c: and the coefficients a N .  

Looking at equations ( l l ) ,  (17) and ( 2 5 )  we see clearly that 

C N  N 1  =- ( N X ~  + xN+ + Q 
N + l  
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With the aim of finding a N ,  observe that this is the total coefficient of the term 
in the exponential argument for the K”’ before the last integration in the variable x1 
is performed. When we make this last integration, completing squares in the variable 
x1 , new terms in &*f2 will appear which are present in ( N  + ~ / N ) ( C ; ) ~  (see for example 
equations (27)). The coefficient of these new terms will be defined by aN and using 
(29) we find 

U N  = $ N (  N + 1) .  (30) 

Then, in the final result for K ( N ) ,  the total coefficient of the term in ~~f~ will be 
uN + a N .  Thus, in calculating K ( N + I ) ,  we expect some kind of relation between 
uN and aN. 

From (30) we can write the first a N :  

=; a2=5 a 3 = 3  (31)  

and so on. Comparing (31) with the values for a , ,  a2 ,  u3 ,  written in (27a), (27b) and 
(27c) respectively, we conclude that 

aN+l = aN +aN. 

In other words we have 

(32) 

(33) 

where a. = 0 because in the zeroth approximation we do not have any integration to 
perform. Substituting (20) in (33) we have 

N 
a N + l = $  C i ( i + l ) .  

i = O  
(34) 

Now we are ready to compute the exact propagator. 
As we have seen in equations (7), (12), (18) and (26), the pre-exponential factor 

and the first two terms of the exponential argument in the expression for the propagator 
are always the same. So when N + CO they will remain with the same values (this can 
be confirmed by direct calculation using (28)). The problem in question becomes 
essentially how to find the limiting value of the last term in the exponential argument 
of K(”. 

To obtain this limiting value, let us look at equation (28). All we have to do is 
calculate the total coefficient of the term ~ ~ f z ,  which is given after the last integration 
in the variable x1 by ( a N  + aN) = aN+l,  apart from a negative sign. Therefore 

where we have used (34) and r = ( N  + 1 ) ~ .  Taking limN+m on both sides of (35) we have 

Using the well known results for these series [ 5 ]  
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we have 

Substituting (38) in (35) we obtain 

Therefore the exact propagator is given by 

K ( x O ,  x N ;  f N )  

which is the exact result for the propagator of a particle moving under the action of 
a constant force. One interesting property of this approach is that in each stage we 
have an explicit approximate expression for the propagator. In the case treated 
previously, this succession converges rapidly (see equations (7),  (12), (18) and (26)). 
We expect that this will occur whenever we have a quadratic action, where the 
propagator is given correctly by (3), because the convergence depends essentially on 
how well the classical trajectory can be approximated by a polygonal one. Of course 
this method is not practical for quadratic actions because the semiclassical approxima- 
tion ( 2 )  provides an exact result. But it not only illustrates the procedure of convergence 
in the path integral method, but also gives an alternative method for approximate 
calculations. It would be very interesting to compare this method with the semiclassical 
approximation in problems where non-quadratic actions are involved. 

We are indebted to I C Moreira for helpful discussions. 
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